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1. The zeros of the partial sum

n Z/,;

Sn(Z) = h~ k!

of eZ tend to infinity as n ---+ 00. A detailed study of their behavior was made
by Szego [3] who showed, among many other things, that if ziTI), ... , z~nl are
the zeros of Sn(z), then the point set {zin) In, ... , z~l) In} has as its points of
accumulation, as n ---+ 00, the simple closed loop A of the curve defined by
I zeI - z I = 1. Moreover, if w = zeI - z, then arg w increases monotonely
from 0 to 21T as A is traversed from z = 1 in the positive direction, and Szego
[3] also showed that if Dn is the number of zeros of Sn(z) in the sector°1 :0:;; () :0:;; ()2 , then

(1)

where if ZI and Zz are the points of A with arguments ()I and ()2 , respectively,
'PI = arg W(Zl) and 'P2 = arg w(zJ. (These results were also obtained later
independently by Dieudonne [1]. See also Rosenbloom [2] where general­
izations are given.)

In view of (1) we may conclude, in particular, that every infinite sector
symmetric about the positive real axis contains zeros of Sn(z) for n sufficiently
large. (This same conclusion follows from the fact that if there were a sector
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containing o(n) zeros of Sn(z) as 11 -+ 00, then eZ would be an entire function of
order zero (Cf. Rosenbloom [2]). In contrast to this, Varga [4] showed that
there exists a constant B > 0 such that S" has no zeros, for 11 = 0, 1, 2,... in
I1m z I ~ B, Re z ;): O. Our purpose here is to demonstrate the existence of
a "parabolic" domain free of zeros of Sn , for 11 sufficiently large.

1. An easy computation verifies that

S (z) = fro (z + t)n e-t dt
non! '

and if we put z = n + w vn,

the path of integration in (2) being the horizontal line from w to the right to
00. Thus, if we put

then w = u + iv is a zero of

if, and only if, z = x + iy = n + (u + iv) vii is a zero of S,,(z); that is, if

x =n +uvn; y = v vii. (3)

If @n has a real zero, n must be odd and x = n + u vn is the unique real
zero of S,,(z). (P6lya and Szego, Vol. I, p. 81). For each zero u + iv of @n
with v =1= 0, a distinct parabola

x = (yjv)2 + u(yjv) (4)

is defined, which contains the corresponding zero x + iy of Sn(z), Our
interest is in the limit points of the zeros of @n as n --+ 00.

LEMMA 1. For each complex number ~,

lim CPnW = e-/;'j2,
".... ro

and the convergence is uniform on every compact set in the ~-plane.
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Proof Straightforward after taking logarithms.

LEMlI,lA 2.
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a ~ 2. (5)

Proof The lemma will follow from the dominated convergence theorem
and Lemma 1 when we show

t ~ 2, n ~ 5. (6)

But if we write m = vii for convenience,

f(t) = log etcpn(t) = m2 10g (1 + _t_) + (1 - m)t,
m·

and if m > 2,f'(t) < 0 if t ~ 2. Thus, if t ~ 2 and m > 2,

00 (_l)k-l ( 2 \7,-2 8 4
f(t) ~ f(2) = 4 ~3 k m} ~ 3m ~ 3

and (6) is established.

LEMMA 3. If Wo = Uo + ivo , (vo ~ 0),

Proof w.,. is an entire function by definition, and

lim JV. CPn(R + IV) dv = O.
R-7OO 0

Lemmas 1-3 imply

THEOREM 1. q)n(w) converges uniformly to

F(w) = r r"/2 d~
w

on any compact set in 1m w ~ O.

Remark.

/- V-
F(w) = 'V ; erfc ( / w).

(7)
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We have seen that for each n the zeros of Sn(z) in the upper half-plane
(and for reasons of symmetry we need only consider these) lie on parabolas
described by (4). Hence, in view of Theorem 1 and Stirling's formula, for n
sufficiently large the zeros in the upper half-plane, x + iy, of Sn(z) lie arbi­
trarily close to the parabolas defined by

x = (y/v)2 + u(y/v), (8)

where now u + iv is any zero of F(w) with v> 0. Therefore, we tum next to
a study of the zeros ofF(w).

2. F(w) is an entire function of order 2 since its derivative is. F(w)
has infinitely many zeros, for if it has a finite number of zeros, then
F(w)/(w - Wi) ... (w - Wk) is entire, of order 2, and free of zeros so that by
the Hadamard factorization theorem

a#- 0.

But

lim F(t) > 0,
t----)-oo

while

is either zero or 00.

The power series expansion of F about the origin has real coefficients,
so its zeros are complex conjugates (F has no real zeros). We restrict our
attention to the upper half-plane.

THEOREM 2. With w = u + iv, F(w) has no zeros in v > 0, uv ~ -71'.

Proof

F(w) = f"' e-(~+iv)2/2 d' = ev"/2 f<Xl e-«2/2) e-ig" d~
w u

<Xl
= eIV2-u2)/2 e-iuv f e-<t2/2)-tu e-it ·v dr.

o

We put

K(u, v) = -1m J'" e- lt2 / 2)-tu e-itv dt = f<Xl e-<t
2
/2l-tu sin tv dt,

o 0

and complete our proof by showing that K(u, v) =1= 0 for v > 0, uv ~ -71'.



ZEROS OF PARTIAL SUMS OF exp(z)

Let

f
[(i+l)7Tl!V

AU) = e-(t
2/2,-tu sin tv dt

j7T/"

so that

K(lI, v) = L AU)·
j~O

Put s = tt' - j7T; then

If t ~ (27T)jV and lIV ~ -7T,

409

is strictly monotone decreasing. Hence, i AU)i, j = 2, 3, ... is strictly mono­
tone decreasing and sgn AU) = (-l)i, j = 2,3,.... Therefore,

'"L AU) > O.
j=2

Now

and

so that

A(O) + A(l) = ~ s: [h ( 7T ~ S ) - h ( 7T ~ S )] sin s ds.

Moreover,

if, and only if

e7T - S)2 + (7T - s)u & (7T + S)2 + (7T + s)u
2v2 V -..::: 2v2 v'
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if, and only if,

NEWMAN AND RIVLlN

7T- +u ~O,
v

which holds by hypothesis. Therefore, A(O) + A(1) ~ 0 and K(u, v) > O.

THEOREM 3. There exists a positive constant, co, such that F(w) has no
zero, u + iv, satisfying v > 0 and u + v + Co ~ O. (Indeed, Re F(w) has no
such zero.)

Proof Suppose v > O. Replacing paths as in Lemma 3 we obtain

hence,

ReF(w) = Fe e-e2j2 dg - re(n2-u2lj2sinuTJdTJ
u 0

~ f" (2 2lj" d> -2- - 0 e n -u ~ sm UTJ TJ·

Suppose U + v = -c, c > O.

(9)

R = If: e(nCu2lj2 sin UTJ dTJ I< ve(,,2-u2lj2 = ve[(v-ulj2](,,-u

~ -(u + c) ec(c+2u lj2 = e C2j2 [_(u + c) eucJ.

Now -(u + c) eUC is positive for u < -c and assumes its maximum at
U = -(c + c-1) so that

e-C2j2

R~--.
ec

Any Co which satisfies

e-Co2j2 ~
--&-- (10)eco ~ 2

(for example, Co = 1/3) proves the theorem.

Remark. The smallest value of Co satisfying (10) is approximately .282.
Taken together, Theorems 2 and 3 imply

THEOREM 4. Every zero, u + iv, of F(w) in the upper half-plane satisfies
uv < -7T and u + v + Co > O.

The set of parabolas (8) can be rewritten

(11)
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Each such parabola passes through the origin (in the (x, y)-plane) and has
slope vlu there. Since u + v + Co > 0 and lIV < -TT, we have

V d2

-<u TT

where

d = (co2 + 4TT)1/2 - Co
2 .

Finally, then, there exists N such that, for n > N, Sn(z) has no zero in the
parabolic domain

x ;?; O. (12)

Moreover, if the zero, u + iv ofF(w) in the upper half-plane which minimizes
vlu is Uo + ivo and UoVo = -a then the parabolic arc

a ( a2 )1/2
y = -"2 + Vo x + 4V2 '

o

contains a limit point of zeros Sn(z) as n --+ 00.

x;?;O
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FIG. 1. Zeros of Sn(z), n = 0,... , 47 and zero-free parabolic domain.
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The zeros of SnCz) for n = 0, 1,...,47 are shown as dots in Fig. 1, where
the domain (12) for d(.282) = .164 is outlined by crosses. These calculations
were carried out for us with the IBM Fortran Scientific Subroutine Package,
on the 360/91, by H. Lewitan.
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