The Zeros of the Partial Sums of the Exponential Function*

D. J. NEWMAN

Department of Mathematics, Yeshiva University, New York, N. Y. 10033

AND

T. J. RIVLIN

IBM Research Center, P. O. Box 218, Yorktown Heights, N. Y. 10598

Received October 16, 1970

DEDICATED TO J. L. WALSH ON THE OCCASION OF HIS SEVENTY-FIFTH BIRTHDAY

1. The zeros of the partial sum

$$S_n(z) = \sum_{k=0}^n \frac{z^k}{k!}$$

of e^z tend to infinity as $n \to \infty$. A detailed study of their behavior was made by Szegö [3] who showed, among many other things, that if $z_1^{(n)}, \ldots, z_n^{(n)}$ are the zeros of $S_n(z)$, then the point set $\{z_1^{(n)}/n, \ldots, z_n^{(n)}/n\}$ has as its points of accumulation, as $n \to \infty$, the simple closed loop A of the curve defined by $|ze^{1-z}| = 1$. Moreover, if $w = ze^{1-z}$, then arg w increases monotonely from 0 to 2π as A is traversed from z = 1 in the positive direction, and Szegö [3] also showed that if v_n is the number of zeros of $S_n(z)$ in the sector $\theta_1 \leq \theta \leq \theta_2$, then

$$\lim_{n \to \infty} (v_n/n) = (\varphi_2 - \varphi_1)/2\pi, \tag{1}$$

where if z_1 and z_2 are the points of A with arguments θ_1 and θ_2 , respectively, $\varphi_1 = \arg w(z_1)$ and $\varphi_2 = \arg w(z_2)$. (These results were also obtained later independently by Dieudonné [1]. See also Rosenbloom [2] where generalizations are given.)

In view of (1) we may conclude, in particular, that every infinite sector symmetric about the positive real axis contains zeros of $S_n(z)$ for *n* sufficiently large. (This same conclusion follows from the fact that if there were a sector

© 1972 by Academic Press, Inc.

containing o(n) zeros of $S_n(z)$ as $n \to \infty$, then e^z would be an entire function of order zero (Cf. Rosenbloom [2]). In contrast to this, Varga [4] showed that there exists a constant B > 0 such that S_n has no zeros, for n = 0, 1, 2,... in $| \text{ Im } z | \leq B$, Re $z \ge 0$. Our purpose here is to demonstrate the existence of a "parabolic" domain free of zeros of S_n , for n sufficiently large.

1. An easy computation verifies that

$$S_n(z) = \int_0^\infty \frac{(z+t)^n}{n!} e^{-t} dt,$$

and if we put $z = n + w \sqrt{n}$,

$$\frac{S_n(n+w\sqrt{n})}{e^{n+w\sqrt{n}}} = \frac{\sqrt{2\pi n} e^{-n} n^n}{n!} \frac{1}{\sqrt{2\pi}} \int_w^\infty \left(1 + \frac{\zeta}{\sqrt{n}}\right)^n e^{-\sqrt{n\zeta}} d\zeta, \qquad (2)$$

the path of integration in (2) being the horizontal line from w to the right to ∞ . Thus, if we put

$$\varphi_n(\zeta) = \left(1 + \frac{\zeta}{\sqrt{n}}\right)^n e^{-\sqrt{n}\zeta},$$

then w = u + iv is a zero of

$$\Phi_n(w) = \int_w^\infty \varphi_n(\zeta) \, d\zeta$$

if, and only if, $z = x + iy = n + (u + iv) \sqrt{n}$ is a zero of $S_n(z)$; that is, if

$$x = n + u\sqrt{n}; \quad y = v\sqrt{n}. \tag{3}$$

If Φ_n has a real zero, *n* must be odd and $x = n + u \sqrt{n}$ is the unique real zero of $S_n(z)$. (Pólya and Szegö, Vol. I, p. 81). For each zero u + iv of Φ_n with $v \neq 0$, a distinct parabola

$$x = (y/v)^2 + u(y/v)$$
(4)

is defined, which contains the corresponding zero x + iy of $S_n(z)$. Our interest is in the limit points of the zeros of Φ_n as $n \to \infty$.

LEMMA 1. For each complex number ζ ,

$$\lim_{n\to\infty}\varphi_n(\zeta)=e^{-\zeta^2/2},$$

and the convergence is uniform on every compact set in the ζ -plane.

Proof. Straightforward after taking logarithms.

Lemma 2.

$$\lim_{n\to\infty}\Phi_n(a)=\int_a^\infty e^{-t^2/2}\,dt,\qquad a\geqslant 2.$$
 (5)

Proof. The lemma will follow from the dominated convergence theorem and Lemma 1 when we show

$$\varphi_n(t) \leqslant e^{4/3} e^{-t}; \qquad t \geqslant 2, \quad n \geqslant 5. \tag{6}$$

But if we write $m = \sqrt{n}$ for convenience,

$$f(t) = \log e^t \varphi_n(t) = m^2 \log \left(1 + \frac{t}{m}\right) + (1 - m)t,$$

and if m > 2, f'(t) < 0 if $t \ge 2$. Thus, if $t \ge 2$ and m > 2,

$$f(t) \leqslant f(2) = 4 \sum_{k=3}^{\infty} \frac{(-1)^{k-1}}{k} \left(\frac{2}{m}\right)^{k-2} \leqslant \frac{8}{3m} \leqslant \frac{4}{3}$$

and (6) is established.

Lemma 3. If $w_0 = u_0 + iv_0$, $(v_0 \ge 0)$,

$$\Phi_n(w_0) = \Phi_n(u_0) - i \int_0^{v_0} \varphi_n(u_0 + iv) \, dv.$$

Proof. Φ_n is an entire function by definition, and

$$\lim_{R\to\infty}\int_0^{v_0}\varphi_n(R+iv)\,dv=0.$$

Lemmas 1-3 imply

THEOREM 1. $\Phi_n(w)$ converges uniformly to

$$F(w) = \int_{w}^{\infty} e^{-\zeta^{2}/2} d\zeta$$
(7)

on any compact set in $\text{Im } w \ge 0$.

Remark.

$$F(w) = \sqrt{\frac{\pi}{2}} \operatorname{erfc}\left(\frac{\sqrt{2}}{2}w\right).$$

640/5/4-5

We have seen that for each *n* the zeros of $S_n(z)$ in the upper half-plane (and for reasons of symmetry we need only consider these) lie on parabolas described by (4). Hence, in view of Theorem 1 and Stirling's formula, for *n* sufficiently large the zeros in the upper half-plane, x + iy, of $S_n(z)$ lie arbitrarily close to the parabolas defined by

$$x = (y/v)^2 + u(y/v),$$
 (8)

where now u + iv is any zero of F(w) with v > 0. Therefore, we turn next to a study of the zeros of F(w).

2. F(w) is an entire function of order 2 since its derivative is. F(w) has infinitely many zeros, for if it has a finite number of zeros, then $F(w)/(w - w_1) \cdots (w - w_k)$ is entire, of order 2, and free of zeros so that by the Hadamard factorization theorem

$$F(w) = (w - w_1) \cdots (w - w_k) e^{az^2 + bz + c}, \quad a \neq 0.$$

But

$$\lim_{t\to\infty}F(t)>0,$$

while

$$\lim_{t\to\infty\infty} (t-w_1)\cdots(t-w_k) e^{at^2+bt+c}$$

is either zero or ∞ .

The power series expansion of F about the origin has real coefficients, so its zeros are complex conjugates (F has no real zeros). We restrict our attention to the upper half-plane.

THEOREM 2. With w = u + iv, F(w) has no zeros in v > 0, $uv \ge -\pi$.

Proof.

$$F(w) = \int_{w}^{\infty} e^{-(\xi+iv)^{2}/2} d\zeta = e^{v^{2}/2} \int_{u}^{\infty} e^{-(\xi^{2}/2)} e^{-i\xi v} d\xi$$
$$= e^{(v^{2}-u^{2})/2} e^{-iuv} \int_{0}^{\infty} e^{-(t^{2}/2)-tu} e^{-itv} dt.$$

We put

$$K(u, v) = -\operatorname{Im} \int_0^\infty e^{-(t^2/2) - tu} e^{-itv} dt = \int_0^\infty e^{-(t^2/2) - tu} \sin tv dt,$$

and complete our proof by showing that $K(u, v) \neq 0$ for v > 0, $uv \ge -\pi$.

Let

$$A(j) = \int_{j\pi/v}^{[(j+1)\pi]/v} e^{-(t^2/2) - tu} \sin tv \, dt$$

so that

$$K(u,v) = \sum_{j=0}^{\infty} A(j).$$

Put $s = tv - j\pi$; then

$$A(j) = \frac{(-1)^{j}}{v} \int_{0}^{\pi} e^{-((s+j\pi)/v)^{2}/2 - u(s+j\pi)/v} \sin s \, ds.$$

If $t \ge (2\pi)/v$ and $uv \ge -\pi$,

$$h(t) = e^{-(t^2/2)-tu}$$

is strictly monotone decreasing. Hence, |A(j)|, j = 2, 3,... is strictly monotone decreasing and sgn $A(j) = (-1)^j, j = 2, 3,...$ Therefore,

$$\sum_{j=2}^{\infty} A(j) > 0.$$

Now

$$A(0) = \frac{1}{v} \int_0^{\pi} e^{-(s^2/2v^2) - (u/v)s} \sin s \, ds = \frac{1}{v} \int_0^{\pi} e^{-(\pi-s)^2/2v^2 - (u/v)(\pi-s)} \sin s \, ds$$

and

$$A(1) = -\frac{1}{v} \int_0^{\pi} e^{-(\pi+s)^2/2v^2 - (u/v)(\pi+s)} \sin s \, ds$$

so that

$$A(0) + A(1) = \frac{1}{v} \int_0^{\pi} \left[h\left(\frac{\pi - s}{v}\right) - h\left(\frac{\pi + s}{v}\right) \right] \sin s \, ds.$$

Moreover,

$$h\left(\frac{\pi-s}{v}\right) \ge h\left(\frac{\pi+s}{v}\right)$$

if, and only if

$$\frac{(\pi-s)^2}{2v^2} + \frac{(\pi-s)u}{v} \leqslant \frac{(\pi+s)^2}{2v^2} + \frac{(\pi+s)u}{v},$$

if, and only if,

 $\frac{\pi}{v}+u \ge 0,$

which holds by hypothesis. Therefore, $A(0) + A(1) \ge 0$ and K(u, v) > 0.

THEOREM 3. There exists a positive constant, c_0 , such that F(w) has no zero, u + iv, satisfying v > 0 and $u + v + c_0 \leq 0$. (Indeed, Re F(w) has no such zero.)

Proof. Suppose v > 0. Replacing paths as in Lemma 3 we obtain

$$F(w) = -i \int_0^v e^{-(u^2 - \eta^2)/2} e^{-iu\eta} d\eta + \int_u^\infty e^{-\xi^2/2} d\xi,$$

hence,

$$\operatorname{Re} F(w) = \int_{u}^{\infty} e^{-\xi^{2}/2} d\xi - \int_{0}^{v} e^{(\eta^{2} - u^{2})/2} \sin u\eta \, d\eta$$
$$> \frac{\sqrt{2\pi}}{2} - \int_{0}^{v} e^{(\eta^{2} - u^{2})/2} \sin u\eta \, d\eta. \tag{9}$$

Suppose u + v = -c, c > 0.

$$R = \left| \int_0^v e^{(\eta^2 - u^2)/2} \sin u\eta \, d\eta \right| < v e^{(v^2 - u^2)/2} = v e^{[(v-u)/2](v-u)}$$

$$\leq -(u+c) e^{c(c+2u)/2} = e^{c^2/2} [-(u+c) e^{uc}].$$

Now $-(u+c)e^{uc}$ is positive for u < -c and assumes its maximum at $u = -(c + c^{-1})$ so that

$$R\leqslant \frac{e^{-c^2/2}}{ec}$$

Any c_0 which satisfies

$$\frac{e^{-c_0^2/2}}{ec_0} \leqslant \frac{\sqrt{2\pi}}{2}$$
(10)

(for example, $c_0 = 1/3$) proves the theorem.

Remark. The smallest value of c_0 satisfying (10) is approximately .282. Taken together, Theorems 2 and 3 imply

THEOREM 4. Every zero, u + iv, of F(w) in the upper half-plane satisfies $uv < -\pi$ and $u + v + c_0 > 0$.

The set of parabolas (8) can be rewritten

$$\left(y + \frac{uv}{2}\right)^2 = v^2 \left(x + \frac{u^2}{4}\right).$$
 (11)

410

Each such parabola passes through the origin (in the (x, y)-plane) and has slope v/u there. Since $u + v + c_0 > 0$ and $uv < -\pi$, we have

$$\frac{v}{u} < -\frac{d^2}{\pi}$$

where

$$d=\frac{(c_0^2+4\pi)^{1/2}-c_0}{2}$$

Finally, then, there exists N such that, for n > N, $S_n(z)$ has no zero in the parabolic domain

$$|y| \leq -\frac{\pi}{2} + d\left(x + \frac{\pi^2}{4d^2}\right)^{1/2}, \quad x \ge 0.$$
 (12)

Moreover, if the zero, u + iv of F(w) in the upper half-plane which minimizes v/u is $u_0 + iv_0$ and $u_0v_0 = -a$ then the parabolic arc

$$y = -\frac{a}{2} + v_0 \left(x + \frac{a^2}{4v_0^2} \right)^{1/2}, \quad x \ge 0$$

contains a limit point of zeros $S_n(z)$ as $n \to \infty$.

FIG. 1. Zeros of $S_n(z)$, n = 0, ..., 47 and zero-free parabolic domain.

NEWMAN AND RIVLIN

The zeros of $S_n(z)$ for n = 0, 1, ..., 47 are shown as dots in Fig. 1, where the domain (12) for d(.282) = .164 is outlined by crosses. These calculations were carried out for us with the IBM Fortran Scientific Subroutine Package, on the 360/91, by H. Lewitan.

References

- J. DIEUDONNÉ, Sur les zéroes des polynomes-sections de e^x, Bull. Sci. Math. 70 (1935), 333-351.
- 2. P. C. ROSENBLOOM, Distribution of zeros of polynomials, *in* "Lectures on Functions of a Complex Variable," (W. Kaplan, ed.), pp. 265–285. University of Michigan, Ann Arbor, MI, 1955.
- 3. G. SZEGÖ, Über eine Eigenschaft der Exponentialreihe, Berlin Math. Ges. Sitzunsber. 23 (1924), 50-64.
- 4. R. S. VARGA, Semi-infinite and infinite strips free of zeros, Univ. e. Politec. Torino. Rend. Sem. Mat. 11 (1952), 289-296.